63 research outputs found

    Hydrocarbon oxidation catalyzed by iron and manganese porphyrins anchored on aminofunctionalized supports

    Get PDF
    The second-generation metalloporphyrins (MePs) [5,10,15,20-tetrakis(pentafluorophenyl)porphyrin iron(III)] chloride, FeP, and [5,10,15,20-tetrakis(pentafluorophenyl)porphyrin manganese(III)] chloride, MnP, were covalently attached to aminofunctionalized supports, with a view to preparing selective solid catalysts for the oxidation of organic compounds. Montmorillonite K10 functionalized with 3-aminopropyltriethoxysilane (Mont1) or modified with 3-chloropropyltriethoxysilane followed by reaction with 1,6-diaminohexane (Mont2), and silica gel functionalized with 3-aminopropyltriethoxysilane (Sil1) or modified with 3-chloropropyltriethoxysilane followed by reaction with 1,6-diaminohexane (Sil2) were synthesized and characterized by UV-Vis and IR spectroscopies, EPR, TGA, and X-ray diffractometry. The catalytic activities of the MePs immobilized on these supports were investigated for the oxidation of (Z)-cyclooctene, cyclohexane and styrene by PhIO or H2O2. The studied systems were efficient catalysts for the oxidation of all substrates, especially when PhIO was the oxidant. There was no MeP leaching from the supports, indicating that covalent binding is a very efficient method for catalyst immobilization. The immobilized FePs were more efficient catalysts than the corresponding MnPs, even when imidazole was employed as a cocatalyst for the supported MnPs. Although the yields of oxidized products obtained with H2O2 were lower than those achieved with PhIO, some heterogeneous MeP systems were more efficient than the parent MePs in solution, both in terms of product yield and selectivity.As metaloporfirinas de segunda geração (MePs), cloreto de [5,10,15,20-tetraquis(pentafluorofenil)porfirinaferro(III)], FeP, e cloreto de [5,10,15,20-tetraquis(pentafluorofenil)porfirinamanganês(III)], MnP, foram covalentemente ancoradas em suportes aminofuncionalizados, com o objetivo de preparar catalisadores sólidos seletivos para a oxidação de compostos orgânicos. Montmorillonita K10 funcionalizada com 3-aminopropiltrietoxissilano (Mont1) ou com 3-cloropropiltrietoxissilano seguida por reação com 1,6-diaminoexano (Mont2), e sílica gel funcionalizada com 3-aminopropiltrietoxissilano (Sil1) ou modificada com 3-cloropropiltrietoxissilano seguida por reação com 1,6-diaminoexano (Sil2) foram preparadas e caracterizadas por UV-Vis, IR, EPR, TGA e difratometria de raios X. As atividades catalíticas das MePs imobilizadas nestes suportes foram investigadas na oxidação de (Z)-cicloocteno, cicloexano e estireno por iodosilbenzeno (PhIO) ou H2O2. Os sistemas estudados foram catalisadores eficientes da oxidação de todos os substratos, especialmente utilizando PhIO como oxidante. Não se observou lixiviamento das MePs dos suportes, indicando que a ligação covalente é um método muito eficiente para a imobilização de catalisadores. As FePs imobilizadas foram catalisadores mais eficientes que as correspondentes MnPs, mesmo quando imidazol foi empregado como um co-catalisador para as MnPs ancoradas. Embora os rendimentos de produtos oxidados utilizando H2O2 tenham sido mais baixos que aqueles obtidos com PhIO, alguns sistemas heterogêneos envolvendo MePs foram mais eficientes que as correspondentes MePs em solução, tanto em termos de rendimento de produto quanto de seletividade.FAPESPCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)CNP

    Complexes of copper(II) with 3-(ortho-substituted phenylhydrazo)pentane-2,4-diones: syntheses,properties and catalytic activity for cyclohexane oxidation

    Get PDF
    Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C6H4-NHN = C{C(= O)CH3}(2) bearing a substituent in the ortho-position [X = OH (H2L1) 1, AsO3H2 (H3L2) 2, Cl (HL3) 3, SO3H (H2L4) 4, COOCH3 (HL5) 5, COOH (H2L6) 6, NO2 (HL7) 7 or H (HL8) 8] lead to a variety of complexes including the monomeric [CuL4(H2O)(2)]center dot H2O 10, [CuL4(H2O)(2)] 11 and [Cu(HL4)(2)(H2O)(4)] 12, the dimeric [Cu-2(H2O)(2)(mu-HL2)(2)] 9 and the polymeric [Cu(mu-L-6)](n)] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H2O)(4){NCNC(NH2)(2)}(2)](HL4)(2)center dot 6H(2)O 14 and the heteroligand polymer [Cu(mu-L-4)(im)](n) 15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, H-1 and C-13 NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L-8)(H2O)]center dot H2O, [Cu(L-1)(H2O)(2)]center dot H2O and [Cu(L-4)(H2O)(2)]center dot H2O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H2O2) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H2O (total yields of ca. 20% with TONs up to 566), under mild conditions

    Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review

    Full text link

    CAT2-mediated L-arginine transport and nitric oxide production in activated macrophages.

    No full text
    Activated macrophages require l-arginine uptake to sustain NO synthesis. Several transport systems could mediate this l-arginine influx. Using competition analysis and gene-expression studies, amino acid transport system y+ was identified as the major carrier responsible for this activity. To identify which of the four known y+ transport-system genes is involved in macrophage-induced l-arginine uptake, we used a hybrid-depletion study in Xenopus oocytes. Cationic amino acid transporter (CAT) 2 antisense oligodeoxyribonucleotides abolished the activated-macrophage-mRNA-induced l-arginine transport. Together with expression studies documenting that CAT2 mRNA and protein levels are elevated with increased l-arginine uptake, our data demonstrate that CAT2 mediates the l-arginine transport that is required for the raised NO production in activated J774 macrophages

    Primidone oxidation catalyzed by metalloporphyrins and Jacobsen catalyst

    No full text
    Primidone (PRM) oxidation by various oxidants such as iodosylbenzene (PhIO), tert-butyl hydroperoxide 70wt.% (t-BOOH), 3-chloroperoxybenzoic acid (m-CPBA) and hydrogen peroxide 30wt.%, mediated by either a salen complex or metalloporphyrins, was investigated. The catalytic systems led to phenylethyl-malondiamide (PEMA) and phenobarbital (FEND), the same metabolites obtained in vivo with P450 enzymes, although three other products were also detected. Product formation was highly dependent on the oxidant, co-catalyst (imidazole), pH and dioxygen. These biomimetic chemical models have potential application in the synthesis of drug metabolites. which should provide samples for pharmacological tests. They can also be employed in studies that pursue the elucidation of in vivo drug metabolism. (C) 2008 Elsevier B.V. All rights reserved.FAPESPCAPESCNP
    corecore